Saturday, August 17, 2019

Signal Conditioning of Thermistor

Introduction Signal conditioning of thermistor Signal conditioning means manipulating an analogue signal in such a way that it meets the requirements of the next stage for further processing. Operational amplifiers(op-amps) are commonly employed to carry out the amplification of the signal in the signal conditioning stage. The signal conditioning equipment may be required to do linear processes like amplification, attenuation, integration, differentiation, addition and subtraction.They are also required to do non-linear processes like modulation, demodulation, sampling, filtering, clipping and clamping squaring, linealizing or multiplification by another function etc. the signal conditioning or data acquisition equipment in many a situation be an excitation and amplification system for passive transducer. It may be an amplification system for active transducer. In both the applications, the transducer output is brought up to a sufficient level to make it useful for conversion, proces sing, indicating and recording.Excitation is needed for passive transducers because these transducers do not generate their own voltage or current. Therefore passive transducers like strain gauges, potentiometers, resistance thermometers, inductive and capacitive transducers required excitation from external sources. The active transducers like techno generators, thermocouples, inductive pick ups and piezo-electric crystals. The thermistor constitute one arm or more than one arm of a wheatstone bridge which is excited by an isolated DC source. The bridge can be balanced by a potentiometer and can also be calibrated for unbalanced conditions.Thermistor is a concentration of the term â€Å"Thermal Resistor†. It is essentially a semiconductor, which behaves as a resistor with a high negative temperature coefficient of resistance. That is, as the temperature of the thermistor increases, its resistance decreases. The temperature co-efficient is expressed in ohms per unit change in degree Celsius ( ° C). thermistors with high temperature co-efficient of resistance are more sensitive to temperature change and are therefore well suited to temperature measurement and control.CONTENTS  ¦OBJECTIVE  ¦EXPLAINATION 1. WHEATSTONE BRIDGE 2. THERMISTOR 3. OPERATIONAL AMPLIFIER 4. INSTRUMENTATION AMPLIFIER  ¦METHODOLOGY  ¦SCOPE 1. Wheatstone bridge: Whetstone bridge is the most accurate method available for measuring resistances and is popular for laboratory use. The circuit diagram of typical Wheatstone bridge is given in figure Rx is the unknown resistance to be measured; R, R2 and R^ are resistors of known resistance and the resistance of R2 is adjustable.If the ratio of the two resistances in the known leg (R2 / R) is equal to the ratio of the two in the unknown leg (Rx / R3), then the voltage between the two midpoints (B and D) will be zero and no current will flow through the galvanometer Vg. R2 is varied until this condition is reached. The direction of the current indicates whether R2 is too high or too low. Detecting zero current can be done to extremely high accuracy (see galvanometer). Therefore, if R, R2 and R3 are known to high precision, then Rx can be measured to high precision.Very small changes in Rx disrupt the balance and are readily detected. At the point of balance, the ratio of R2 / R = Rx / R3 Therefore, Alternatively, if R, R2, and R3 are known, but R2 is not adjustable, the voltage difference across or current flow through the meter can be used to calculate the value of Rx, using Kirchoff s Circuit laws (also known as Kirchhoff s rules). This setup is frequently used in strain gauge and resistance thermometer measurements, as it is usually faster to read a voltage level off a meter than to adjust a resistance to zero the voltage.In practical Wheatstone bridge, at least one of the resistance is made adjustable, to permit balancing. When the bridge is balanced, the unknown resistance (normally connected at Rx) may b e determined from the setting of the adjustable resistor, which is called a standard resistor because it is a precision device having very small tolerance. Rx= (R2/R1). R3 APPLICATION OF WHEATSTONE BRIDGE: A Wheatstone bridge may be used to measure the DC resistance of various types of wire, either for the purpose of quality control of the wire itself or of some assembly in which it is used.For example, the resistance of motor winding, transformers, solenoids, relay coils and resistance of thermistor, RTD also can be measured. PRINCIPLE Resistance of thermistor changes with change in temperature. Resistance of thermistor decreases with increase in temperature while resistance of thermistor increases with decrease in temperature. It is a thermally sensitive resistor. FORMULA:- Rti = Rt2Exp[ p (1 / T1 – 1 / T2) ] Where,RT]= resistance of thermistor at absolute temp. Tl °k RT2= resistance of thermistor at absolute temp. T2 °k P= a constant depending upon the material of the thermistor (Typically between 3500 °k to 4500 °k)CONSTRUCTION:- Thermistors are composed of sintered mixture of metallic oxides such as Manganese, Nickel, Cobalt, Copper, Iron and Uranium. They are available in a variety of sizes and shapes. They may be in the form of beads, roads and discs. WORKING:- A thermistor change in electrical resistance due to a corresponding temperature change is evident whether the thermistor's body temperature is changes as result of conduction or radiation from the surrounding environment or due to self heating brought about by power dissipation within the device. THEORY:- .Thermistor is a concentration of the term ‘Thermal Resistor†. It is essentially a semiconductor which behaves as a resistor with a high negative temperature coefficient of resistance. That is, as the temperature of the thermistor increases, its resistance decreases. The temperature co-efficient is expressed in ohms per unit change in degree celcius ( ° C). thermisto rs with high temperature co-efficient of resistance are more sensitive to temperature change and are therefore well suited to temperature measurement and control. Thermistors are available in a wide variety of shapes and sizes.However, thermistor beads sealed in the tips of glass rods are most commonly used because they are relatively easy to mount TYPES OF THERMISTOR:- 1]PTC 2]NTC NTC (Negative Temperature Coefficient) It implies that the resistance of thermistor decreases with increases in its temperature. These thermistors can detect changes in temperature, which could not be observed with RTD's or Thermocouple circuits. NTC type thermistors mostly used in industry. Resistance of thermistor is used in industry is 2. 2 k Q. for temperature 30 °C. It's cost near about Rs. 10-15 SPECIFICATION:- *Range(? ): 50-300 *Accuracy : ± 1 *Resolution: 0. 01 ? C *Scale: Non-Linear *Thermister Constant: 4000? K OPERATIONAL AMPLIFIRES: One type of amplifier, which finds its way into almost a ll points of measurement and instrumentation system, is the operational amplifier. The word operational indicates that the amplifier can perform mathematical operations like inversion addition, subtraction, multiplication, division, integration and differentiation etc. Properties of ideal operational amplifier are: 1. It should have an infinite input impedance. 2. It should have zero output impedance. 3.It should have an infinite gain (gain of the order of 105 to 109) 4. It should have flat response over a wide frequency range. The operational amplifier consists of a very high gain amplifier with a negative > feedback. The gain of operational amplifier with negative feedback is determined by feedback components and not by the internal amplifier circuitry. APPLICATIONS OF OPERATIONAL AMPLIFIER: Some of the important applications of an op-amp are: 1. Amplifiers 2. Active filters 3. Arithmetic circuits 4. Log and antilog amplifiers 5. Voltage comparators 6. Waveform generators 7.Precis ion rectifiers 8. Multipliers 9. Timers 10. Multivibrators 11. Regulated power supplies Operational amplifier characteristics: 1. Input offset voltage : The input offset voltage is defined as the voltage that must be applied to the input terminals to drive the output to zero. This is about 2mV for 741 amplifier. It should be understand thet the offset voltage changes with temperature. 2. Input offset current: just as a voltage offset may be required across the input to make the output voltage zero, so a net current may be required between the inputs to zero the output voltage.This current is called input offset current. This is equal to the difference between the two input currents. 3. Input bias current: It is defined as the mean of the two input currents required to make the output voltage zero. 4. Slew rate: it is the highest rate at which the output can change, it is expressed in terms of v/jiS. 5. Unity gain frequency: in many cases, specifications include the frequency respons e including unity gain frequency. This is the frequency at which the open loop gain of the amplifier becomes unity. The low frequency gain is about 20,000 and falls to unity at about 1MHz. he amplifier is said to have a 1 MHz gain bandwidth produt. 6. Common mode rejection ratio (CMMR): it is defined as the ratio of differential gain to common mode gain. CMRR is infinite for ideal op-amp. Thus the output voltage corresponding to the common mode noise is zero. IDEAL CHARACTERISTICS OF OP-AMP: 1. Gain is maximum. 2. Input impedence should be infinite. 3. Output impedence should be zero. 4. CMRR should be infinite. 5. Bandwidth should be infinite. TYPICAL VALUES OF OP- AMP: 1. Input offset voltage:  ± 6mV. 2. Input offset current:  ±200nAmp 3. Input bias current:  ±7nAmp 4.Differential input resistance/impedence: 2m CI 5. Input impedence for 741 (FET op-amp): 1000 G Q 6. Output impedence: 75 Q. 7. Gain: 2 lakhs 8. Output voltage swing: 26Vpp 9. Supply current: 2. 8 mAmp APPLICATI ONS:- 1. It is used in lab and medical purpose. 2. PTC type thermistors are used to protect the motor from overheating. 3. It gives very accurate reading at high temperature. 4. For measurement of level pressure, flow of the liquid, composition of gases, thermal conductivity and vaccum measurement. UA741 General-purpose single operational amplifier UA741 General-purpose single operational amplifierFeatures * Large input voltage range * No latch-up * High gain * Short-circuit protection * No frequency compensation required * Same pin configuration as the UA709 Applications * Summing amplifiers * Voltage followers * Integrators * Active filters * Function generators Description The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intended for a wide range of analog applications. N DIP8 (plastic package) D SO-8 (plasticmicropackage) Pin connections (top view) 2 – Inverting input 3 – Non-inverting input 4 – VCC - 5 – Offset null 2 6 – Output 7 -Vcc+ – N. C. The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network (6 dB/octave) ensures stability in closed- loop circuits. 1/11 www. st. com Schematic diagram 1 Schematic diagram UA741 Figure 1. Schematic diagram Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol| Parameter| Value| Unit| Vcc| Supply voltage|  ±22| V| Vid| Differential input voltage|  ±30| V| Vi| Input voltage|  ±15| V| Output short-circuit duration| Infinite| | Rthja| Thermal resistance junction to ambient SO-8 DIP8| 125 85|  °C/W| Rthjc| Thermal resistance junction to case SO-8 DIP8| 40 41 |  °C/W| ESD| HBM: human body model(1) DIP package SO package| 500 400| V| | MM: machine model(2)| 100| V| | CDM: charged device model(3)| 1. 5| kV| Tstg| Storage temperature range| -65 to +150|  °C| 1. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1. 5kfl! resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. . Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 n). This is done for all couples of connected pin combinations while the other pins are floating. UA741 3. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 4. 4. INSTRUMENTATION AMPLIFIER: The low level signal output of electrical transducers often need to be mplified before further processing. This is done by the use of instrumentation amplifier. The important features of instrumentation amplifier are as follows. 1. Selectable gain with high gain accuracy and gain linearity. 2. Differential input capability with high gain common mode rejection. 3. High stability of gain with low temperature co-efficient. 4. low DC offset and drift errors referred to input. 5. low output impedance. The input amplifiers A[ and A2 act as input buffers with unity gain for common mode signals ecm and with a gain of (1+2R2/Ri) for differential signals.A high input impedance is ensured by the non-inverting configuration in which they operate. The common mode (cm) rejection is achieved by the following stage which is connected as a differential amplifier. The optimum common mode rejection can be obtained by adjusting R6 or R7 ensuring that Ei – Ei R4 R6 The amplifier A3 can also be made to have some nominal gain for the whole amplifier by an appropriate selection or R4, R5, R6 and R7. The drift errors of the second stage add to the product of the drift errors of t he first amplifier and first stage gain.Hence, it is necessary that the gain in the first stage be enough to prevent the overall drift performance from being significantly affected by the drift in the second stage. The drift problem of instrumentation amplifier can be improved if amplifiers Ai and A2 have offset voltages, which tends to track the temperature. The gain of an instrumentation amplifier can be varied by changing R{ alone. A high gain accuracy can be obtained by using precision metal film resistors for all the resistance. Figure shows a simplified differential instrumentation amplifier using a transducer bridge.A resistive transducer, thermistor, whose resistance changes as a function of some physical quantity such as temperature is connected in one arm of the bridge and is denoted by (Rr  ± A R), where RT is the resistance of the thermistor and delta R is the change in the Generally, resistors Ra, Rb and Rc are selected so that they are equal in value to the transduce r resistance RT at some reference condition. The bridge is balanced initially at a desired reference condition. However, as the temperature changes, the resistance of the thermistor also changes causing the bridge to unbalance (Va 4- Vb).The output voltage of the bridge can be expressed as a function of the change in the resistance of the thermistor. Let the change in resistance of the thermistor be delta R. since Rb and Rc are fixed resistors, the voltage Vb is constant. However, voltage Va varies as a function of the change in thermistor resistance. Therefore The negative sign in this equation indicates that Va

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.